Latent space models for dynamic networks with weighted edges
نویسندگان
چکیده
منابع مشابه
Evolving Latent Space Model for Dynamic Networks
Networks observed in real world like social networks, collaboration networks etc., exhibit temporal dynamics, i.e. nodes and edges appear and/or disappear over time. In this paper, we propose a generative, latent space based, statistical model for such networks (called dynamic networks). We consider the case where the number of nodes is fixed, but the presence of edges can vary over time. Our m...
متن کاملLatent space models for networks using Aggregated Relational Data1
Despite increasing interest across a range of scientific applications in modeling and understanding social network structure, collecting complete network data remains logistically and financially challenging, especially in the social sciences. This paper introduces a latent space representation of social network structure for partially observed network data. We derive a multivariate measure of ...
متن کاملDynamic Probabilistic Models for Latent Feature Propagation in Social Networks
Current Bayesian models for dynamic social network data have focused on modelling the influence of evolving unobserved structure on observed social interactions. However, an understanding of how observed social relationships from the past affect future unobserved structure in the network has been neglected. In this paper, we introduce a new probabilistic model for capturing this phenomenon, whi...
متن کاملNode-weighted measures for complex networks with directed and weighted edges for studying continental moisture recycling
In many real-world networks nodes represent agents or objects of different sizes or importance. However, the size of the nodes is rarely taken into account in network analysis, possibly inducing bias in network measures and confusion in their interpretation. Recently, a new axiomatic scheme of node-weighted network measures has been suggested for networks with undirected and unweighted edges. H...
متن کاملConfident Network Indices with Latent Space Models
Although traditional social network analysis operates on the assumption that the observed relationships represents the true social network, this assumption is dangerous, especially in noisy environments. This assumption is especially problematic given the lack of robustness with respect to missing or erroneous information that has been found for node-level network indices such as degree central...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Social Networks
سال: 2016
ISSN: 0378-8733
DOI: 10.1016/j.socnet.2015.07.005